Minimize the sum of the strongly convex function and a proper convex function.
This algorithm minimizes
F(x) + G(K(x))
where F is strongly convex, G is a proper convex function and K is a linear operator by a duality argument.
Parameters : | grad_fs : callable
prox_gs : callable
K : callable or ndarray
KS : callable or ndarray
x0 : ndarray
L : float
maxiter : int, optional
method : string, optional,
fbdamping : float, optional full_output : bool, optional
retall : bool, optional
callback : callable, optional
|
---|---|
Returns : | xrec: ndarray : fx: list : |
Notes
This algorithm use the equivalence of
min_x F(x) + G(K(x)) (*)
with
min_u F^*(-K(u)) + G^*(u) (**)
using x = grad(F^*)(-K(u)) where the convex dual function is
F^*(y) = sup_x = <x,y> - F(x)
It uses forward_backward as a solver of (**)