Minimize an optimization problem using the Preconditioned Alternating direction method of multipliers
This algorithm assumes that F, G are both “proximable” where the optimization objective reads:
F(K(x)) + G(x)
where K is a linear operator.
Parameters : | prox_fs : callable
prox_g : callable
K : callable or ndarray
KS : callable or ndarray
x0 : ndarray
maxiter : int, optional
theta : float, optional sigma : float, optional
full_output : bool, optional
retall : bool, optional
callback : callable, optional
|
---|---|
Returns : | xrec: ndarray : fx: list : |
References
A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging, JOURNAL OF MATHEMATICAL IMAGING AND VISION Volume 40, Number 1 (2011)